model { for(i in 1:N){ logit(mu_M[i]) <- alpha*x[i] M[i] ~ dbern(mu_M[i]) mu_y[i]<- c*x[i]+beta*M[i] mu_y0[i]<- c*x[i]+beta*mu_M[i] y[i] ~ dnorm(mu_y[i],prec2) j1[i]~dunif(0.5,100.5) j2[i]~dunif(0.5,100.5) j3[i]<- round(j1[i]) j4[i]<- round(j2[i]) logit(mu_M1[i]) <- alpha*(x[i]+deltax) mu_y1[i]<- c*(x[i]+deltax)+beta*mu_M1[i] te[i]<-(mu_y1[i]-mu_y0[i])/deltax logit(mu_M2[i]) <- alpha*(x[j3[i]]) mu_y2[i]<- c*x[i]+beta*mu_M2[i] logit(mu_M3[i]) <- alpha*(x[j4[i]]) mu_y3[i]<- c*(x[i]+deltax)+beta*mu_M3[i] de[i]<-(mu_y3[i]-mu_y2[i])/deltax ie[i]<-te[i]-de[i] } alpha ~ dnorm(0.0,0.001) beta ~ dnorm(0.0,0.000001) c ~ dnorm(0.0,0.000001) var2 ~ dgamma(1,0.1) prec2 <-1/var2 }